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Abstract

Writing memory efficient and fast text rendering for mobile devices through
the use of vector graphics can prove quite a challenge. This is the premise
for this report. Two widely different vector based rasterizer approaches, a
triangle- and a plane sweep-rasterizer, were examined in terms of memory
efficiency, speed and rendering quality. To enable these measurements, the
rasterizers were implemented in C and compared to each other, as well as
to the leading open-source rasterizer found in FreeType.

It was found that the triangle rasterizer always used less memory than
FreeType for font sizes smaller than 60 pixels. The plane sweep rasterizer,
in turn, was about 10-15% faster than FreeType, given the right parameters,
when test run on a desktop computer. Depending on the demands, either
of the rasterizers described in this report can be useful for mobile systems,
although the triangle rasterizer will probably benefit from the use of new
technology such as hardware acceleration on mobile devices in the future.
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Chapter 1

Introduction

Not long ago mobile phones had very poor screen resolution and could
only display very few colours. There was no need for anything but bitmap
fonts since text was only used in menus and in simple text messages, none
of which require scalable text or fancy effects. But mobile devices quickly
become faster and screen resolution and colour depth increases.

This opens for a lot of new possibilities such as web browsing and more
advanced word processing on the phone. These features require some sort
of solution where text can be freely scaled to any size or have attributes
such as italic, bold, colour, and so on.

If bitmap fonts would be used for these purposes then a vast number of
images for every single character would be needed. It’s a much better idea
to represent the glyphs with vector based graphics instead of bitmaps.

Such solutions can be found in many embedded devices today such as
the Apple iPod and various high-end mobile phones for example. Many
of them use a very well established open-source system called FreeType.
However, that solution only handles rasterization and no layout issues
such as line breaks, writing direction, text formatting and so on. FreeType
can be used together with Pango, which is a, so called, layout engine under
the LGPL license.

The result of this thesis is intended to be used within a new text render-
ing solution. Mainly the rasterizer step, which converts a vector represen-
tation of a glyph into a bitmap with desired attributes, will be investigated.
Therefore, this report is not concerned with the issues of text layout, but
concentrates on some new ideas for the rasterization, even if we will ex-
tend beyond this frame somewhat. Namely, we will also touch on some
important improvements that increases readability for small print.

The primary goal of the thesis is to determine if these new ideas could
be used in a particular font rendering solution software for complex scripts
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– v-rocs [17]. The main purpose of this piece of software is to apply linguis-
tical rules and correctly rendered strings for complex scripts such as Indic
scripts, Arabic scripts, Thai, and so on. There are a number of such solu-
tions on the market today, but it has been found that many of them contain
errors, and are not used by the native speakers.

Many existing font formats hold their own linguistic instructions that
are interpreted by some font rendering engines. In Microsoft Windows this
rendering engine is called Uniscribe. Linux and other open source systems
commonly use Pango.

There are limitations in the font formats and these rendering engines
make erroneous assumptions about the linguistic rules. Thus, complex
scripts are often not presented correctly linguistically (Uniscribe does a par-
ticularly poor job). v-rocs tries to remedy this by offering its own tailored
solution for each complex language, moving most of the linguistic intel-
ligence from the font files to code modules. This also means that several
fonts can share the same logics, but any logic that is already within a font
file is lost.

Because v-rocs uses a different approach a new outline font format has
been tailored for its purposes. This format will be looked at briefly, because
it changes the requirements of the rasterizer a little, compared to what a
TrueType rasterizer would need to handle.

Until now v-rocs has only offered bitmap fonts, and the next natural
step is to offer outline font support as well. A good rasterizer combined
with the linguistic superiority of v-rocs should make it a very strong solu-
tion. Because it’s intended to be used in mobile phones with sparse mem-
ory and limited processing power, there is a need for a rasterizer that satis-
fies both these demands.

6



Chapter 2

Background

Before we dive into the rasterization algorithms it’s important to get some
insight in some of the mathematics used and how outline font formats
work. Also, a brief history of rasterizers can be found at the end of the
chapter.

2.1 Brief Explanations

This report assumes that the reader has some experience in graphics pro-
gramming. Some brief explanations of some concepts are presented here
as a repetition of terms that are crucial for understanding the methods de-
scribed in this report.

Unicode

A standard which allot numbers for glyphs in different world scripts. Not
all glyphs are in the Unicode standard, but all that are have a unique num-
ber. More info at [14]

Edge function

Edge functions are given by the vertices of a triangle [16]. Represented as
ax + by + c. Evaluating the expression for a point gives < 0 if the point is
“outside” the edge, > 0 if it’s “inside” and = 0 if it’s directly on the edge.
Which side is the “inside” and the “outside” depends on the winding of
the vertices defining that edge.
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Barycentric coordinates

Barycentric coordinates for triangles are the weights of the vertices for a
point in the same plane as the triangle.

Texture coordinates

Texture coodinates are (usually) given at vertices and are often denoted by
(u, v). Using barycentric coordinates the values are interpolated over the
triangle. The coordinates map to a 2d-image, and thus the triangle can be
textured.

Sampling scheme

A sampling scheme is a pattern of sample points within a pixel. Sample
points are evaluated against the edge functions of the triangle to determine
if it’s inside or outside that triangle.

Affine transformation

An affine transformation preserves co-linearity and proportion between
points but does not preserve angles and lengths. Affine transformations in-
clude sheering and scaling. Euclidean transformations, such as translation
and rotation, form a subset of affine transformations. We use the following
translation matrix for affine transformations:

(
sx ry tx
rx sy ty

)
(2.1)

2.2 Numerical Considerations

2.2.1 Bézier Curves

A Bézier curve is a smooth curve described by a polynomial with certain
characteristics. The polynomial can be of any degree > 2 and for a given
degree n it’s given by:

B(t) =
n∑

i=0

(
n

i

)
Pi(1 − t)n−iti, t ∈ [0, 1]. (2.2)

If we let t wander from 0 to 1 then the function B(t) will assume all
coordinate values along the curve. The curve appearance is given by the
points Pi, where i ∈ [0, n]. Note that the number of points is one more than
the degree of the curve.
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The points P0 and Pn are called end points and are the only points guar-
anteed to coincide with the curve. They do so for t = 0.0 and t = 1.0
respectively. The points in between the end points are control points since
they control the behavior of the curve.

The simplest Bézier curve is a straight line, and is best described by two
points. When varying t over [0, 1], we get something that is the analogue of
linear interpolation.

Introducing a third point causes some curvature to the line segment
(unless all three points lie on the same line). This is a quadratic Bézier curve
and from equation 2.2 we see that it can be described by the following func-
tion:

B(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2, t ∈ [0, 1]. (2.3)

P0 and P2 are control points and determine where the curve should
begin and end. P1 is the only control point of this curve and it decides the
bending of the curve.

An easier way of visualizing the behavior of a quadratic Bézier curve
can be found in figure 2.1.

Figure 2.1: A quadratic Bézier curve. The two black dots are end points
and the white one is the control point which determines the curvature.

The bounding triangle of a quadratic Bézier curve is the triangle defined
by its three points. The curve can never go outside this bounding triangle,
so if a point is outside the triangle, it can’t be a part of the curve (for t ∈
[0, 1]).

We also define the bounding box to be the smallest axis-aligned rectangle
to include all three points of the bounding triangle. The curve is of course
always contained within this rectangle as well.
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2.2.2 Converting Higher Order into Quadratic Bézier Curves

For reasons that become clear in section 2.6, we only need to be concerned
with quadratic curves in the real time rendering process. Curves that are of
higher order can be converted into quadratic sub-curves and saved as such
in the font file.

The procedure for doing this is not entirely trivial and will only be de-
scribed briefly. The following steps are generally used:

Approximate the higher order order curve with a quadratic curve. Use
some error measure to see how well the approximation fits the original
curve. If the result is good enough then we’re satisfied. If the approxima-
tion is too coarse, subdivide the curve into two sub-curves and repeat the
process for the new curves. This is done recursively until the approxima-
tion is good enough.

The procedure with error measurement is described in the article [18].

2.2.3 Forward differencing

There are a number of ways to evaluate Bézier curves. Most of the resources
found on the web seem to endorse the de Casteljau algorithm for this pur-
pose. This algorithm will be presented in the next section. First we will
take a look at another algorithm called forward differencing.

Kankaanpää has a good description of this algorithm on his page [6]. It
tackles cubic Bézier curves, but we’re only interested in evaluating quadratic
curves, so we stray a little from his description.

Consider the Taylor series for the curve polynomial. Since we are deal-
ing with quadratic curves, all terms above and including the third derivate
of the curve polynomial will be 0. This leaves us:

B(t) = B(x) + B′(x)(t − x) +
B′′(x)(t − x)2

2!
(2.4)

What we want is the next following point, which is given by B(x + t).
Inserting this into the Taylor series gives:

B(x + t) = B(x) + B′(x)(t) +
B′′(x)t2

2
(2.5)

Notice that we now have all right hand side B(x) functions and derivates
free of t’s. We can now calculate these for x = 0 (the start point), and doing
so yields:

B(0) = P0

B′(0) = 2(P1 − P0)
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B′′(0) = P0 − 2P1 + P2

All of these functions are constant, but in the Taylor series B ′(0) is still
multiplied with t, and B′′(0) with t2.

When we evaluate the curve we increase t with the same constant (∈
[0, 1]) each iteration. This means that we can calculate the values with
which we need to increase the different terms each iteration. We call this
incrementation value s = 1.0

steps . The steps value is the number of points we
want to evaluate along the curve. This gives the following initial functions:

C = P0

C ′ = 2(P1 − P0)s
C ′′ = s2(P0−2P1+P2)

2

To update the evaluation value B(x + t) each iteration we then do the
following:

C(x + n · s) = C + C ′ + C ′′

Where n is the iteration number. We also need to update the other
terms. Deriving the Taylor series in equation 2.5 gives:

B′(x + t) = B′(x) + B′′(x)t ⇒ B′(x + t)t = B′(x)t + B′′(x)t2 (2.6)

Note that the third order derivation will be 0. Also note that the last
term is no longer divided by 2. We derive again and get:

B′′(x + t) = B′′(x) (2.7)

This means that this term is constant, since t doesn’t affect it. To sum
up, from these equations we see that for each iteration we need to do the
following work:

C = C + C ′ + C ′′

C ′ = C ′ + 2C ′′

where s is the incrementation step introduced earlier. We need to mul-
tiply C ′′ by 2 since the last term in equation 2.6 is twice as big as the C ′′ we
calculated.

By using this algorithm we only need multiplications to set up the C-
variables. After that only additions are needed.

Important to note about this particular approach is that we have no
control over how the points are distributed over the curve, only that they
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Figure 2.2: The de Casteljau pyramid. This scheme is used to get an
overview of the weights to get a curve point for a certain t. n in this figure
is the degree of the curve. For a quadratic Bézier curve, there will only be
three levels in this pyramid (which builds horizontally).

have even spacing for the t value. This means that the algorithm is sensitive
to velocity changes in the curve. This could be a good thing, since most
often one would like more points where there is more “action” going on
with the curve, but in reality the algorithm is simply just a little less flexible.

The approach presented in the next section is recursive, and points
could be evenly spaced, or according to velocity, depending on what one
desires.

For some cases it’s practical to use the Forward Differencing method,
and in other cases the de Casteljau algorithm, or Recursive Subdivision,
could be better, as we will see in the next section.

2.2.4 Recursive Subdivision

The de Casteljau algorithm uses linear interpolation for an arbitrary num-
ber of t′s, where t ∈ [0, 1]. It’s common to use the scheme in figure 2.2 to
get an overview over how different points weigh in to produce the final
evaluation result for a certain t. For each entry a new value is interpolated,
except for the first where the original end- and control points are. The new
value is given by:

Bi+1
j = Bi−1

j (1 − t) + Bi−1
j+1t (2.8)

The final value of the pyramid is the point on the curve for the current
t.

But to interpolate like this is quite costly, and instead we use recursive
subdivision to get our curve points. We know that t = 0.5 for a quadratic
Bézier curve gives:
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Figure 2.3: Subdivision using the recursive subdivision. Two recursive iter-
ations of the recursive subdivision. In the first iteration the point on the top
of the curve is found. The second iteration subdivides the left side of the
curve and finds a new point on the curve that lie between the previously
found point and the start point. The process can be repeated for each sub-
curve until, for example, the desired amount of points are found, or until
all sub-curves are smaller than a certain length.

t = 0.5
(1 − 0.5)P0 + 0.5P1 = Q

(1 − 0.5)P1 + 0.5P2 = R

(1 − 0.5)Q + 0.5R = S

S is thus the value at the peak of the curve. Now that we have this
point, we can create two sub-curves. One will be the curve defined by the
bounding triangle P0, Q, S and the other S,R,P2. We repeat the process for
each sub-curve if we feel like it. The termination condition is usually when
too many recursive calls have been made, or when a sub curve is small
enough to be approximated by a line.

Two recursion steps of this algorithm is visualized in figure 2.3.

For floating point calculations this algorithm can become slow since it
requires a multiplication by 0.5 for each recursive call. These calls can also
slow things down a bit if the curve is large and/or there are a lot of points to
evaluate. But if we use fixed point math the middle point can be calculated
with one addition and one bit shift, which is often a great deal faster.

Both Recursive Subdivision and Forward Differencing are tried in the
Scanliner algorithm. They have both been implemented using fixed point
math. Read more about this under the Results chapter.

13



2.2.5 Interval Arithmetic

Let’s denote an interval delimited by a and a as

â = [a, a] (2.9)

Furthermore, let x be a value such that x ∈ â. We call x an interval
variable.

If we were to add two of these interval variables together the result will
be a value within the combined interval, as described by:

â + b̂ = [a, a] + [b, b] = [a + b, a + b] (2.10)

Addition and subtraction operations are inexpensive to implement in
software. Multiplication, however, requires a lot more processing power
and is defined as:

â · b̂ = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] (2.11)

From this it can be determined !deduced that four multiplications and
three comparisons are needed to determine the low and the high bound of
the interval.

If we know that â = b̂ the interval would be:

â2 = [min(a2, aa, a2),max(a2, aa, a2)]

But since we’re squaring we don’t have to worry about negative values,
and the aa-term can never be neither greater than nor lower than the other
two possible terms. This results in the following:

â2 =

{
[0,max(a2, a2)] 0 ∈ â2

min(a2, a2),max(a2, a2) 0 /∈ â2 (2.12)

For these squaring operations we need only two multiplications and
two comparisons - a lot more inexpensive than the regular interval multi-
plication.

Interval arithmetic will become useful when evaluating Bézier curves
in the Xorizer algorithm. There is, of course, a lot more to be said about
this technique. For further information on the subject see [2].
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2.3 Key Concepts of Outline Fonts

Glyphs

A glyph is most often a character such as a simple a or a σ. It can also be the
two dots above ä or a blank character such as space.

Associated with a glyph is an outline, and some glyph metrics that are
described below. The outline is what represents the shape of the glyph. It is
composed of contours and they, in turn, are described by lines and curves
and are infinitely scalable. This is described in more detail in section 2.4.1.

Composite glyphs

Let’s assume we have the Latin characters a and o in our font, and that
we want to add the characters ä and ö. It’s obvious that these glyphs are
variations of some common components - the bodies and the two dots.

One way of adding the two new glyphs to our font would simply be to
draw two new glyphs for these characters. It’s redundant to keep the same
glyph information in several glyphs. A better alternative is to use a feature
called composite glyph.

A composite glyph is a combination of glyphs that already has outline
data in the font file. Each component has an affine transformation as well,
so they can be positioned and scaled individually. For example, it’s only
necessary to keep the glyphs a, o, and .. in the font, and then compose the
two new glyphs with the existing pieces.

Glyph metrics

Not all glyphs have a body, and some glyphs may have special advanc-
ing requirements for the cursor and the beginning of the next glyph. This
doesn’t necessarily need to correspond to the actual width of the glyph.
For these purposes a special width called advance width is introduced. This
metric is useful for blank spaces and the like. The advance width is usually
snapped to the pixel size of the current text rendering or glyphs after the
first one would cause a sub-pixel offset.

The offset values and the size are more important metrics for the raster-
izer. The size ensures that no excess memory needs to be allocated. Not all
glyphs start at the origin of its glyph space, so the offset is useful to avoid
rendering any white space before of the glyph body.
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2.4 Representing Glyphs

2.4.1 Outlines

An outline is defined as a set of closed curves, or contours, in the plane. Each
contour is made up of segments which are either straight lines or quadratic
Bézier curves. The segments are delimited by points. The points are num-
bered in succession, starting at zero. The order in which the points are
numbered correspond to the path that defines the shape of this contour.
The first point is also the last and thus the contour becomes a closed curve.

The points can be either of the type on-curve or off-curve. On-curve
points coincide with the actual curve, while off-curve points need not do
so. Using only on-curve points results in an outline with only straight lines.
Off-curve points are used to define smooth curvatures. Two end points of
type on-curve, and an off-curve control point define the control triangle for
a quadratic Bézier curve contour segment.

1

1

0 02

2
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34

4

5
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6
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Figure 2.4: Contour winding. The left contour encloses the finite area
within the figure. The right contour encloses the infinite area outside the
figure, and needs to be closed by an outer contour.

At this point, as far as we know, the same path can be represented in
two ways, each with different winding (see figure 2.4). We define different
things depending on the enumeration order. An area enclosed by a contour
we define as the area on the “right” hand side when facing the path direc-
tion. It is therefore important to use the correct winding when designing
glyphs.

A contour with counter-clockwise winding encloses an infinite area and
must be limited by an outer contour with the opposite winding. Think of
the inner ring of the glyph O for instance - it needs to be “closed” by the
outer ring in order to have a finite area.

16



Figure 2.5: Circle approximation representation. An approximation of a
circle can be described by four points. The four on-curve points can be cal-
culated from the off-curve point coordinates, as they lie in the exact middle
of the two surrounding off-curve points.

For one particular sequence of outline points, we don’t need to store all
the point coordinates. Instead it can be extracted from the adjacent points,
thus we can save some storage space. This case occurs when an on-curve
point lies in between two off-curve points. It is assumed that on-curve
points lie in the exact middle of the two off-curve points. Therefore the
on-curve coordinate information becomes redundant. This means, for ex-
ample, that it is possible to define an entire contour with off-curve points
(see figure 2.5).

Figure 2.6: Ambigous area definition. The inner and outer areas are as
such because of the winding of the enclosing outline. But what is the outer,
infinite area?

A contour should not cross its own path. Doing so will result in the
contour both closing and opening some of the same areas at the same time,
resulting in rather nasty ambiguities (figure 2.6). An area enclosed by con-
tours can only be either inside or outside the outline. This should not be
violated, even if some rasterizers may be able to handle these cases.

Contours may cross each others paths, there are no restrictions to this.
An enclosing contour can never be “opened” by another contour, which

17



Figure 2.7: Plus signs defined differently. Plus sign defined in two differ-
ent ways. The right plus will not be rendered correctly with an even-odd
rasterizer, though such rasterizers are insensitive to winding.

makes it possible to define a plus sign in either of the ways described in
figure 2.7.

A valid outline is composed of one or more contours, and has finite
area. I.e. the contours make up an area entirely within the bounding box of
the outline points of the glyph.

However, not all fonts follow these standards set by the TrueType for-
mat [10], and reverse the winding of some contours. In turn, some raster-
izers instead follow the even-odd convention. This means that they only
count the number of line crossings to determine whether a point is inside
the shape or not. The result of this is that the winding no longer is an issue,
but the right plus sign in figure 2.7 will not be rendered properly since the
middle square will be outside the shape according to the even-odd rule.

The Xorizer presented in this report follows the even-odd rule, and the
Scanliner doesn’t.

2.5 Complex scripts

For the moment, v-rocs mainly targets Indic complex scripts. There are
quite a lot of rules applied to these languages which differs quite a lot from
the input characters, as opposed to Latin scripts where the rendered output
string is more or less exactly the same as the input string.

Rules that need to be considered when writing Indic scripts include:

Mapping

Certain combinations of glyphs should be replaced by one or a few other
glyphs. These combinations are called compound characters. Typical exam-
ples can be viewed in figure 2.8. Compound characters are very common
in these scripts, and obviously the font needs to contain special glyphs for
these cases.
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Reordering

Some glyphs should sometimes be placed before certain other glyphs, even
though they are both typed and pronounced after the other glyph(s). This
concerns mainly some vowels that should be placed before consonants or
the whole consonant part of a syllable. Examples of this can be found in
figure 2.8.

Positioning

There are two different ways to reposition glyphs. One is called kerning
and is analogous to the contraction of white space that is sometimes done
in the glyph sequence A V -> AV for example. In Indic scripts it is used
when there are certain parts of a preceding or succeeding glyph that should
overlap the space of certain other glyphs.

The other kind of positioning is done using attachment points where a
marker on a glyph is mapped to another marker on a target glyph. Through
this, different glyphs can be combined with each other to produce different
meanings. This is better explained visually in figures 2.8 and 2.9.

For positioning there are sure to be overlaps in glyph shapes. Though
it might not seem like it at first, this could be somewhat problematic. How
this should be handled is discussed in section 4.2.2.

2.6 Outline font formats

As mentioned in the Introduction, there are some special circumstances
when selecting which font format to use.

TrueType and OpenType are the most common font formats used today.
TrueType is quite an old format, and it contains a lot of information that is
simply not needed for our purposes. Instead it would seem like a good idea
to write a new format which only contains information relevant to v-rocs
and things that could aid the rasterizer.

The OpenType outline point data comes in two flavors - TrueType or
CFF. The former only supports quadratic Bézier curves, whereas the latter
can have cubic Bézier curves as well. The TrueType flavoured variant is
by far the most commonly used. It is also much simpler to process in real-
time. Therefore only quadratic Bézier curves are considered, but a way
of dividing higher order curves into second order curves is presented in
section 2.2.2. Because a custom font format is used for this thesis, any such
curve splitting could be done offline and would of course not affect real-
time performance nor appearance in any way.
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Figure 2.8: A Hindi word written with the Indic Devanagari script. Note
that the dotted circles are not part of the glyphs. They only indicate that
something to combine with is “missing” where the circles are. 1. The input
Unicode string that composes the word. 2. Through mapping rules the 5th
and 6th glyphs are combined to a new below-base accent. The 3rd glyph is
positioned below the second glyph through positioning rules. The second
glyph always positions below-base accents below its right stem, and the
positioned glyph has an attachment point above its shape, as can be seen
in figure 2.9. 3. The 2nd, 3rd and 4th glyphs are combined. Note that the
stem is removed from the 2nd glyph. This happens when two consonants
are connected. Again we’ve used mapping and positioning rules. 4. An
above base glyph has been positioned above the cluster formed in the pre-
vious step. Also, the 4th and 5th glyphs from the previous step has been
reordered, and then kerned in order to form the 3rd cluster in the current
step. 5. All clusters, or syllables, have now been formed, and the word has
been rendered using a variety of mapping-, reordering- and positioning
rules.

Figure 2.9: Positioning of a below-base dependent vowel. The base conso-
nant (left) has an anchor point. The vowel sign (right) has an attachment
point. These two glyphs are aligned by moving the attachment point to the
anchor point, and the vowel with it, to produce a combined syllable.
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More or less, the only difference between OpenType and TrueType,
other than the glyph outline flavouring, is that the OpenType format has
introduced a lot of new tables with linguistic rules. These aren’t interest-
ing to us in any way, neither linguistically nor for the rasterization process,
so we won’t even bother with these tables. In conclusion, the OpenType
format offers no added value to us.

Other than the mentioned issues, TrueType is a sound format, and by
far the most widely used, so it seems like a good idea to base our format on
it. And since most OpenType fonts use TrueType “flavouring”, these can
be used as well.

We introduce our own format which we call VOFF - v-rocs Outline Font
Format. Here we have some freedom to stir a little in the data tables to suit
our needs better. The format is basically a new branch from TrueType, but
the fact that we have our own format means that we don’t strictly have to
follow the TrueType standard when it isn’t optimal. Some of these cases are
mentioned in the report. The cubic-to-quadratic offline conversion is one
such case.

2.7 Previous work

Over the years there have been many rasterizers for outline fonts and vec-
tor graphics in general. They have been needed for almost as long as com-
puters have had the capability to display graphics. The target platforms
have also varied a lot, so rasterizers tend to be rewritten to suit new de-
mands and limitations.

Basically, there are two main approaches to produce a bitmap from an
outline, be it a glyph or any vectorial shape. One is the triangle rasterizer
and the other is the scanline rasterizer.

The most common rasterizer type is the scanline rasterizer (also known
as plane sweep rasterizer). Since this method is so commonly used, the
general solution will be described, and certain characteristics for some spe-
cific rasterizers will be mentioned.

The idea here is to scale the shape to the right size in screen space and
then fill one pixel row, or scanline, at a time. Usually intervals of covered
pixels are identified, and then the intervals, or spans, are plotted onto the
screen. One perticular of the FreeType rasterizers (it has many) does exactly
this. It’s simply called ftgrays, and this is the fastest and most exact of the
FreeType rasterizers.

It decomposes the glyph into horizontal spans using the winding of the
outline points. It divides the outline into two sets of curves, ascending
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and descending. The bitmap is created by sweeping and filling the spans.
Due to the winding of the curve outline, crossing an ascending curve im-
plies that filling should start, and crossing a descending curve means filling
should stop.

If the even-odd rule is used, there will not even be any use for differ-
entiating between ascending and descending lines. If the intersections are
sorted primarily on scanline, and secondarily on x-value, every odd cross-
ing enters the shape (puts the pen down for drawing) and every even cross-
ing leaves it (lifts the pen). This FreeType rasterizer does not follow this rule
though.

For Bézier curve segments, subdivision using the de Casteljau algo-
rithm is done recursively until the subdivided segments are no taller than
a single scanline.

Another possible solution would be to use forward differencing. For
quadratic Bézier curves it requires only a few multiplications for the setup,
and then the curve can be divided into line segments using only additions.
There is a problem with numerical stability, however, since the rounding
error is magnified for each iteration of the algorithm.

The real issue with these kinds of algorithms is the pixel coverage prob-
lem. How do you fast and efficiently determine the colour of the semi-
covered pixels, the ones that intersect the outline?

Monochrome (1 bpp) rasterizers of course get away with simpler pixel
coverage checks since they only need to determine if a pixel is intersected
by the shape. This can be done more or less conservatively (figure 2.10).
The convention, though, is to use the pixel centra as the sampling point.
Monochrome renderers have a hard time coping with small shapes since
details and narrow structures are easily missed. Therefore, it’s quite com-
mon to use certain methods to grid-fit and reshape the outline before ren-
dering. Such methods can be important in font rendering, and are dis-
cussed in section 5.2.

Today FreeType is without any doubt the most used rendering solu-
tion by many different products (outside of the Windows environment of
course). It includes a couple of different rasterizers and they are all variants
of the scanline approach.

Another rasterizer on the market is the D-Type Font Engine, which
claims to have the fastest rasterizer in the world, and supports both the
even-odd rule and the winding rule. Little information on this product is
revealed though, and it is even unclear if it uses this scanline approach, or
some sort of triangle rasterizerisation.
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Figure 2.10: Difficult cases for monochrome rasterizers. It’s not always easy
to determine if a pixel should be lit or not. In a) most of the pixel is covered,
yet if the center is sampled this pixel won’t be coloured. In b) we land
exactly on an edge. Exactly half the pixel is covered, so how should this
be handled? In c) and d) the outcome is a bit easier to predict, yet if we
don’t colour c), is there perhaps a chance that the neighbouring pixel to the
right will not be coloured either, and will we then end up with a gap in our
glyph?

Triangle rasterizers are usually most useful in hardware accelerated ren-
dering, where triangles are very quickly processed in hardware.

A triangle rasterizer is not unlike the scanline rasterizer. One can even
argue that the triangle rasterizer is a scanline rasterizer with the limita-
tion that it can only handle triangles and not arbitrary polygons. There is
truth to this; the triangle is (most often) traversed and drawn scanline by
scanline. However, knowing that we are dealing with only triangles opens
certain opportunities but sets some restrictions, as will be come apparent
in this report.

It’s not that common to use triangle rasterizers in font rendering solu-
tions. Mostly these rasterizers are used for games and simulations where a
lot of information is stored and interpolated for the triangles.

Text has no texture so when glyphs are drawn using triangles we only
need flat shading, so texture coordinates should not be needed. However,
in certain algorithms they can be used to speed up rendering. Loop and
Blinn [11] suggest rendering glyphs on the GPU. Their method require that
the glyph is tessellated into triangles first, and then each of these is drawn
using hardware acceleration. For Bézier segments texture coordinates are
used instead of edge function tests, and this method is also used by the
Xorizer. In these cases we can benefit from using the texture coordinates.
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Chapter 3

The Scanliner

When memory consumption is not vital but correctness is essential, one
would benefit from using an algorithm that computes the exact pixel cover-
age. Thus it gives the most accurate results. This algorithm was written as
a comparison to the Xorizer.

The Scanliner uses some tried and true ideas from different sources.
These will be pointed out throughout this chapter. The differences will be
discussed briefly.

Also interesting to note is that, as opposed to sample based algorithms,
such as the Xorizer, this algorithm theoretically computes the exact pixel
coverage of the outline.

3.1 Theory

All of the outline segments are processed in no particular order. The idea
behind this algorithm is to store intensity information for the pixels that
intersect the outline. The intensity information will be the same no mat-
ter what order the segments are visited in. This saves us the trouble of
having to do any sorting of segments, which is sometimes needed in plane
sweep algorithms [1] (The libart library does this [3]). This sort of algo-
rithm, where intersection information for pixels is stored, is called an edge
list algorithm.

For each line (segment line or approximated from a curve) each pixel it
intersects is processed. Two values are computed per pixel – coverage and
trail.

The Scanliner algorithm doesn’t follow the even-odd rule. It strictly
uses the winding (ascending/descending) of the segments to calculate pixel
coverage. An ascending line encloses the area that lies to the right of it.
Therefore, we define the coverage of a pixel as described in figure 3.1. If
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Figure 3.1: Pixel coverage calculation. There are two values calculated. The
coverage value is the grey area, and is defined as the area enclosed by the
line and the right edge of the pixel, as the figure describes. The trail value
is defined as the sum of the height of the covered area within a pixel. The
concept can be viewed to the right of each pixel. The coverage and the trail
of descending lines are defined the same way as the ascending lines, only
with the difference that they are negative.

the line is ascending, the value is added to the pixel’s coverage, and if it’s
descending, it’s subtracted.

The second value, trail, is the length of the line projected onto the right
pixel edge. This is also described in figure 3.1. If no lines intersect the fol-
lowing pixel(s), then the trail value multiplied with the pixel width (which
is 1) is the area covered for this/these pixel(s). For ascending curves we
add to, and for descending, we subtract from from the trail value. While
the coverage value is local to the individual pixels, the trail values are ac-
cumulated.

First, let’s consider the line 0 < slope < 1. We traverse each pixel the
line intersects and compute the pixel coverage and trail. The line traversal
algorithm is a modified version of the classic Bresenham Line Algorithm [13]
and is described briefly below. If we don’t consider the end points of the
line we have two different cases described in figure 3.2.

a

b

Figure 3.2: Different line-pixel intersections. The lines have a slope of 0 <
k < 1. In case a) the line only covers one single pixel vertically, for this x
interval (which is one pixel wide). In case b) two pixels are intersected. The
grey lines help visualize how the area will be calculated for these pixels.
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function line_algorithm
{

Compute the lengths in the x and y directions of the line (dx and dy)
Compute the slopes dx/dy and dy/dx

Compute coverage and trail for the start point, and push results to list

for each pixel from x_start to x_end {

The next intersections are calculated using the slopes

if the y value of next integer x-intersection is larger than the
current y value {

The line spans two pixels vertically for this x (case b)
Compute the coverage and trail for the first pixel and push to list
increase y by 1
Compute the coverage and trail for the second pixel and push to list

} else {

The line only covers one pixel (case a)
Compute the coverage and trail and push to list

}

increase x by 1
}

Compute coverage and trail for the end point, and push results to list
}

We need to take some special care of the pixels where the start and end
points are located. All possible cases for the 0 < slope < 1 sloping line are
covered in figure 3.3. Since we calculate the points where the line intersects
the edges of the pixel we can compute the information we need, as illus-
trated in figure 3.4. We wish to know the coverage and trail for the two
pixels.

In the figure we have a line which ends in the point p. It intersects the
pixel edges at a and b.

The origin is at the lower left corner. The upper trail value t0 then be-
comes the fractional part of the py. The lower trail t1 becomes 1 - fractional
part of by. Now on to the coverage. The upper pixel will have coverage
c0 = t0· frac(ax+px

2 ), where frac(x) is the fractional part of x. And for the
lower pixel we get c1 = t1· frac(bx+ax

2 ).
The special cases for vertical lines and single pixel coverage are not in-

cluded here, but these are trivial once you get the idea of the rest of the
algorithm.
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Especially consider the case in figure 3.6. From this example we can see
that we don’t need to process horizontal lines at all. They are handled by
the trail values.

a b c d

e f g h

Figure 3.3: Pixel-line intersections. All possible line coverage scenarios for
lines intersecting pixel, where 0 < slope < 1.
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Figure 3.4: Pixel coverage and trail calculations.

The line algorithm is the same for lines with 1 < slope < inf . We only
need to “mirror” it along the line x = y to see that we can use the same
approach, only with x and y changing places with each other. The area
coverage calculations will be slightly different, though, since only the area
to the immediate right of the curve is handled by each line. We will not go
in to detail on these cases though, the one described will suffice.

If the current segment is a Bézier curve, then we can use either forward
differencing or recursive subdivision, presented in sections 2.2.3 and 2.2.4,
to break the curve into line segments which approximate it. Since we use a
finite number of lines for this approximation, the pixels intersected by the
curve will not get the exact pixel coverage, unless a great number of lines
is used. Most often, though, it is quite enough to use only a few lines to ap-
proximate the curve, and more so if we are dealing with small fonts, where
curves are generally quite small also. Figure 3.5 shows the use of different
number of lines approximated by the forward differencing algorithm.

Now we have all the information about the outline that we need. All
we have to do is to use this information to produce a bitmap of the glyph.
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Figure 3.5: Bézier curve approximation using forward differencing. Dif-
ferent number of points have been used to approximate a glyph from the
Telugu script. Each curve along the outline is approximated with the given
number of points between their end points. Imagine that this glyph is only
going to be about 10 pixels tall or so. Two or three approximation points
are probably sufficient to get good results.

We process each scanline by itself and we begin plotting the from left
to right. Trail, t, is set to 0. We continue to draw with 0 intensity until we
hit an intersection. The pixel is given an intensity i, and the trail is updated
with the trail value from the current intersection tc:

i = t + cx t = t + tc

where cx is the coverage for the current pixel. In other words, this
means that the trail is the inherited area coverage from the previous in-
tersections, and the coverages are the pixel local changes to this. If a new
intersection is found on the next pixel, we use the above formulas. Other-
wise we just keep drawing with the current t value. Once the end of the
scanline is reached the t value will be 0.

3.2 Implementation

The implementation of this algorithm is quite straight forward. We iter-
ate over the points and call the line processing function for each line, as
described above. The Bézier curve processing also follows the described
procedure, where the curve is approximated by lines.

For maximum speed, fixed point math should be used. The font files
delivers point information in 26.6 form, but this precision is probably not
enough for slope calculations, and for Bézier curve evaluation. For these
purposes 20.12 fixed point was used. Both Bézier curve evaluation meth-
ods were tested. The two alternatives for approximating the curve are de-
scribed below. First we look at forward differencing:

function render_bezier
{
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Coverage:
Trailing:

%

a b

40
50

40 - 15 = 25
50 - 25 = 25

25 + 5 = 30
25 + 8 = 33

Coverage:
Trailing:

%
33 - 21 = 12
33 - 33 = 0

12 + 50 = 62
0 + 100 = 100

62 - 12 = 50
100 - 33 = 67

Figure 3.6: Two neighbouring pixels processed by the Scanliner. We pro-
cess one line at a time. Initially, the coverage and the trail are both set to
0%. The first line is ascending and covers about 40% of the pixel. It takes
up half the height of the pixel, and therefore the trail is 50%. The next line is
descending, and we therefore subtract it’s coverage and trail values, which
are -15% and -25% respectively. Next up is an ascending line. No more lines
covers this pixel. The coverage value is then complete and won’t change
any more. The trail value is inherited by the next pixel (b). The horizontal
line is skipped since it will have 0 area and doesn’t take up any height (has
no trail). We follow the same principles as before for the right pixel. Ulti-
mately we have visited all lines and coverage and trail have been calculated
for both pixels.

curve_point_n = number of points we want
to approximate with

t = 1 / curve_point_n

// Multiplications are only needed in the setup phase of this algorithm.

Set up f, fd, fdd_2, fdd

for curve_ponts_n - 1 { // Note: -1
// uses only additions in the loop!

q = f
f = f + fd + fdd_2
fd = fd + fdd

call render_line
}
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Figure 3.7: A long sequence of pixels rasterized by the Scanliner. This
shows the a whole scanline being rasterized. Notice that the trail doesn’t
change for the horizontal line (pixel c). The coverage of each pixel is de-
pendent on the trail that is accumulated before it. The bottom row shows
the resulting pixel intensities as given by the coverage and trail values.

// last point
call render_line

}

Forward differencing can lead to some nasty rounding errors, especially
for fixed point math. It is wise to use an excessive amount of decimal bits
for these calculations. It is also wise to skip the last iteration where the
last point should coincide with the end point of the Bézier curve, and use
the end point of the curve instead of the approximated value. This ensures
that the line is closed, and no rounding errors risk causing odd rendering
artifacts. Also, for fixed point math the division can be substituted by a
bit-shift if curve_point_n is a power of 2.

Now we look at the recursive subdivision in pseudo code:

function render_bezier
{

if ending conditions are not met {
subdivide(offset, offset)

} else {
call render_line

}
}

function subdivide
{
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Calculate mid point of the lines p0 -> p1 and p1 -> p2
Use this new line and calculate its mid point

if we’re not at the maximum number of recursions and ending
condition for the left sub-curve not met {

call subdivide for the left sub-curve

} else {
call render_line

}

if we’re not at the maximum number of recursions and ending
condition for the right sub-curve not met {

call subdivide for the right sub-curve

} else {
call render_line

}
}

The ending condition is subjective. A good idea is to continue until
each sub-curve is a pixel or so in size before calling the render line function
for it. If too narrow conditions are used the algorithm can become slow
due to recursion calls, but this depends on the target platform. Also note
that for fixed point math, all divisions can be replaced with with a bit-shift
operator.

The ending condition used for this reference implementation for the
recursive subdivision was if the curve spans less than two pixels in the x-
and y-directions, the curve is small and/or has too little curvature for us to
proceed. For forward differencing 4 interpolation points were used.

The pixel information, coverage and trail, is stored in one linked list per
scanline. When new values are inserted in a list they are placed in the right
position, so that the linked lists remain sorted.

The pseudo code below describes the algorithm:

function rasterize
{

for each contour {
for each set of 3 points {

if point 0 and point 1 are on-curve points {
call render_line

} else { // we have a bezier curve
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if on-curve point missing {
interpolate new on-curve point

}

call render_bezier // forward diff. or rec.subdiv.
}

}
}

call plotting_algorithm
}

function render_line(p0, p1)
{

is_asc = p0.y < p1.y // true if line is ascending

if line is contained within a pixel {
call line_algorithm_single_pixel(p0, p1, is_asc)

} else if line is vertical {
call line_algorithm_vertical(p0, p1, is_asc)

} else if line is horizontal
// ignored!

} else {
switch (slope of line) {

call line_algorithm(p0, p1, is_asc) // one of four variants

// the line algorithms differ somewhat depending on
// the slope of the line. See the Scanliner Theory
// section for more details.

}
}

}

Some inspiration for this algorithm was fetched from the (very sparse)
libart documentation [3]. The libart algorithm stores one single intensity
delta value for each changing pixel, where as the Scanliner stores local in-
tensity, and an intensity that will be inherited by succeeding pixels. In-
stead of sorting the edges before rasterization, though, an edge list based
approached was used instead. The edge list algorithm specifics can be read
about in [1].

In the Results section both images and performance for bitmaps pro-
duced through the use of recursive subdivision as well as forward differ-
encing are presented.
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Chapter 4

The Xorizer

Keeping in mind that embedded devices often have limited resources and
weak processing power, it would of course be desirable to have an algo-
rithm for rendering glyphs which is both memory efficient and fast to ex-
ecute. In this chapter we explore an algorithm that uses small amounts of
memory and see if it could be suitable for these limited systems. A very
brief concept of the algorithm was suggested by [12], but is evaluated here
in much more detail.

This algorithm has similarities to classical triangle rasterizer approaches,
in that it utilizes triangles as building blocks to construct the image repre-
sentation of the glyph. However, instead of breaking down the outline area
into triangles through tessellation, this algorithm uses a slightly different
method, which ultimately results in that only a small, limited number of
points need to exist in memory at any time throughout the rasterization.
Yet this advantage does not cancel out any of the other benefits of the tes-
sellation methods, which potentially makes this algorithm efficient.

4.1 Theory

The Jordan Curve Theorem states that if we have a non-self-intersecting closed
curve we also have an inside and an outside. Now let’s assume that we
have a line from a point p to infinity. From the theorem it follows that we
can determine if the point p is inside or outside by counting the number of
times the line crosses a curve. An even number of times means it’s outside,
and an odd number of crossings means it’s inside.

We use some sample points for each pixel to determine intensity. Any
given sample point can only be either inside or outside the outline. Grey
pixels that occur through anti-aliasing is achieved by using more than one
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sample per pixel. The pixel’s intensity is selected between 0 and 1 accord-
ing to the percentage of samples in the pixel that are inside the glyph.

The state of a sample point can obviously be represented with one bit;
0 for outside and 1 for inside.

1
2

3

4

6

5

7
8

Figure 4.1: Sample pattern change. The samples are inverted if they are
inside a triangle. The two top pixels’ sample patterns XOR’d results in the
bottom pixel’s sample pattern.

The general idea of this algorithm is to kind of “carve out” the shape by
inverting areas created by a fixed point and one contour at a time.

An arbitrary anchor point a is selected. With this anchor point we create
a triangle with a line segment on the contour we wish to evaluate. We only
concern ourself with straight line segments for now.

The three edge functions of this new triangle are calculated. Sample
points inside the bounding box of the triangle are evaluated, and if they fall
inside the triangle, they are inverted (NOT’d). The line segment will never
be needed again, so it can be disposed of at once. Only the two segment
points plus the anchor point need to be in memory. For Bézier segments
we need three points instead of two, but still, this is not a lot. This is the
reason why this algorithm is so memory efficient.

Let’s enumerate each unique sample point position within a pixel with
a number between 0 and n. Remember, a sample point can have either
state 0 or 1. We use a data type that holds n or more bits. Each sample
point state then corresponds to a bit position in the data type. Each sample
has a corresponding state bit in an array of a certain data type which have
as many bits as there are samples in a pixel. This is useful because when
we invert our samples, we can do so n samples at a time by using the XOR-
operation (this is why we call it the Xorizer).

For instance, consider the following case; We have a pixel with 8 sam-
ples. It has the sample state 00110101 from previous triangle traversals.
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Figure 4.2: The Xorizer in action. The algorithm uses the anchor point a
and one edge at a time to create a triangle. The contents of the triangles are
inverted, one by one. The resulting image has the correct samples coloured.
In this example there is only one sample at the center of each pixel, but the
idea is the same no matter how many samples are used.

From the next triangle we get the new sample state pattern 11110000. This
means that bits 5 - 8 were inside the triangle and these slots should be in-
verted. Using the XOR operation with the old sample state and the one
from the current triangle we get the new sample state 11000101 for this
pixel. This case can be viewed in figure 4.1.

Figure 4.2 shows the Xorizer in action as it rasterizes a shape with four
edges using 1 sample-per-pixel.

The anchor point must not be moved while evaluating samples against
a contour. If the whole contour is processed, the result will always be
the same, regardless of anchor point placement. When selecting this an-
chor point, one should try to minimize the overdraw (discussed in section
6.4.1). This selection could of course be offline. Anchor point selection is
discussed in section 4.3.

Bézier curve segments require some extra work, since they are a bit
more difficult to evaluate than simple lines. A curve requires one trian-
gle pass, as described above, and then one curve evaluation pass. We use
the end points of the curve as input to the triangle processor, which means
that the triangle evaluated will be defined by the base of the curve’s bound-
ing triangle and the anchor point. Once this is done, it’s time to evaluate
the area enclosed by the line between the end points and the curve. The
shape we are inverting is shown in figure 4.3.
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Figure 4.3: Bézier evaluation shape. When a curve segment is found, we
need to process both the curve and the triangle created by the base of the
bounding triangle and the anchor point.

An interesting technique for Bézier curve evaluation was suggested by
Loop and Blinn in the article [11]. Suppose that we have a set of sample
points and a quadratic Bézier curve. Suppose we want to know on which
side of the curve each of the sample points is. Sample points that are within
the bounding triangle, and are “below” the curve are considered to be a
part of the Bézier segment.

The idea, then, is that we set the texture coordinates (u,v) to p t0 = (0, 0),
pt1 = (0.5, 0) and pt2 = (1, 1), where ptn is the texture coordinate at ver-
tex n (n = 1 for the control point). This is visualized in figure 4.4. If we
let the bounding triangle defined by these three points be the end points
and control point for a Bézier curve, the polynomial for the curve for these
particular points coordinates will be very simple:

u2 − v < 0 (4.1)

This means that instead of having to evaluate some nasty Bézier poly-
nomial we can use the texture coordinates to determine where we are in
texture space, and from that we know on which side of the curve we are.

The other portions of the Loop and Blinn article are not suitable for em-
bedded devices, and their article mainly targets GPUs. The idea involves
tessellation through Delanuay triangulation. Also, their article doesn’t have
any particular emphasis on memory usage.

4.2 Implementation

In the Xorizer only a small number of points are processed at a time, as
opposed to a tessellation approach. The drawback is that some sample
points may (and most definitely will) be visited more than once.
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Figure 4.4: Texture coordinate mapping for Bézier evaluation. The points
of the bounding triangle are given texture coordinates according to this
figure. Using these coordinates, u and v, when we traverse the triangle
we can more easily check on which side of the curve we are on by using
equation 4.1.

4.2.1 Trivial implementation

The most trivial implementation of the Xorizer algorithm is quite easy to
construct, and doesn’t differ much from a classic triangle rasterizer used in
many graphics applications throughout the latter decades. A simple way
to describe the algorithm is through the pseudo code below. Note that this
reference implementation uses 8 samples per pixel since that corresponds
nicely to the number of bits in a char.

function rasterize
{

for each contour {
for each set of 3 points {

if point 0 and point 1 are on-curve points {
call render_triangle

} else { // we have a bezier curve
if on-curve point missing {

interpolate new on-curve point

}

call render_triangle
call render_bezier

}
}

}
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// each pixel now contains its sample pattern

count the number of bits in each pixel
}

function render_triangle
{

calculate the triangle size
calculate the three edge functions
calculate the bounding box
set up tie breaker rules
initiate iteration variables

for each row in the bounding box {
for each pixel (k) on the current row {

xor_me = 0

for each sample (i) in the pixel {
if sample i is inside triangle {

in xor_me set bit i to 1
}

}

Xor with xor_me for the current pixel
update iteration variables

}
update iteration variables

}
}

function render_bezier
{

calculate the triangle size
calculate the three edge functions
calculate the bounding box
set up tie breakers
initiate iteration variables
initiate barycentric coordinates for first pixel

for each row in the bounding box {
for each pixel (k) on the current row {

xor_me = 0

for each sample (i) in the pixel {
if sample i is inside triangle {

calculate tex.coords. from bary.coords.

if tex. coords. u*u - v < 0 {
// if we are inside the curve in tex.space.

in xor_me set bit i to 1
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}
}

}

Xor with xor_me for the current pixel
update iteration variables // including bary.coords.

}
update iteration variables // including bary.coords.

}
}

To further decrease rasterization time consumption, several different
ways of optimizing the algorithm were implemented and evaluated. These
optimizations are described in section 4.2.5.

4.2.2 Plotting glyphs

The Bengali and Devanagari scripts have headstrokes, a horizontal line that
runs above the glyph bodies. This line should be continuous and not have
gaps between glyphs. Most fonts ensure that there is no gap by using some
extra headstroke length. This means that the headstroke actually goes out-
side the advance width of the glyph, and thereby overlaps the successive
glyph’s bounding box, and thus the headstrokes are being overlapped.

The fact that glyphs can overlap results in special requirements when
plotting the rasterized bitmaps to the canvas area. Most of the time the
headstroke doesn’t align with the pixel grid, and therefore there are some
grey, anti-aliased pixels at the end of the headstroke. If we simply plot over
whatever is on the canvas with our glyph then these grey pixels will create
something resembling a gap in the headstroke. This is so because any black
pixels already there on the canvas will be overwritten. This phenomenon
can be viewed in figure 4.5.

Since glyphs are produced in separate bitmaps we can’t know which
areas of a pixel that are covered, only how much of it. Therefore, when two
bitmaps overlap it is a problem knowing the correct way of blending pixels.

A decent way to solve this for headstroke based scripts is to use the
maximum value of the two pixels from the two bitmaps, such as in fig-
ure 4.5. The result is a good compromise for these complex scripts even
though it is not entirely correct. Consider the case in figure 4.6. The pixel
coverage is actually 75 percent of the pixel, yet only 50 percent intensity
will be applied to the pixel by using this maximum value-method. Instead
consider the case in figure 4.5 again. This is a much more common case in
headstroke based scripts, and the result will also be correct since fonts use
extended headstroke length.
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Figure 4.5: Overlap plotting problem. Two Devanagari glyphs are raster-
ized. If the second glyph overwrites the first one the anti-aliased pixels in
between will create a gap between them. If instead the maximum value of
each pixel is used, they they are nicely drawn as a unity, as they should.

M
A

X

Figure 4.6: Plotting problems. The two topmost pixels are 50% covered
each. If they were to be drawn on top of each other, the covered area would
be 75%. There is no way, however, to know which parts of the pixel that is
covered once the rasterizer has produced the bitmap and thrown away the
outline information. Using the maximum value of the two pixels will only
give 50% coverage, so in this case, this is a potentially poor solution.
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4.2.3 Bit-counting algorithms

There are a number of ways to count the number of bits for a certain data
type. Basically, they can be divided into two categories.

Lookup table

The first method is to use the value of the variable to be bit-counted as the
slot in a lookup table. The slot holds the number of bits in its slot value.
For instance, the number 209 is 11010001 in binary (in the Xorizer this is
equivalent to sample points 1, 5, 7 and 8 being inside the glyph shape). So
the slot 208 (the 209th slot) holds the value 4.

This is the fastest way of counting bits, but it requires some memory
to store the lookup table. The table needs to hold 2n values to cover all
the variants of bit patterns, i.e. the size doubles for each added bit. For
the reference implementation the table size is 256 since 8 sample points per
pixel is used. This seemed a reasonable trade-off considering the 256 bytes
it entailed spending.

Counter

Counting bits without using a pre-computed table means that the num-
ber of bits is somehow calculated from the bit pattern. The most trivial
approach is looping over the bits of the variable and simply counting the
number of 1’s found.

However, there are more sophisticated solutions. Gurmeet Singh Manku
has compiled a list of different bit-counting algorithms, and how well they
perform. His findings can be read at [5].

4.2.4 Sampling scheme

Different rasterization algorithms handle pixel coverage differently. Ide-
ally, a pixel’s shade should reflect the exact pixel coverage percentage of
the outline. There is only one correct result for any given number of bits
per pixel. How well a rasterized glyph agrees with this correct result is
dependent on the sampling scheme.

It’s impossible to consider every thinkable outline shape, but there are
some rules of thumb for selecting a better scheme. This is especially impor-
tant for very small font sizes, where poor correctness can hinder readability.

Some effort was made to find a suitable sampling scheme for the sample
points. The human perception is sensitive to jaggedness for lines that are
supposed to be straight or nearly straight. Therefore no two sample points
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Figure 4.7: The 8 rooks sampling scheme.

Figure 4.8: 8 rooks sampling problem. The outline overlaps some pixels
with the 8 rooks sampling scheme. Since the edge has the same angle as
two three-point constellations we can only get the intensities: 0/8, 3/8, 4/8,
5/8 and 8/8.

should lie on the same vertical or horizontal line. We should maximize
the number of samples in these directions, and thus we also maximize the
number of greys for these cases.

The scheme 8 rooks 4.7 was considered, but was later dropped. Even
though it doesn’t have samples sharing vertical or horizontal lines, it does
have up to three samples on a single shared line. This means that for certain
angles, such as illustrated in figure 4.8, there are only five shades of grey.
For every angle to have the maximum amount of greys no more than two
samples should lie on the same line.

It’s difficult to avoid these cases. The sample scheme which ended up
in the implementation also have three sample points more or less lined
up. The sample pattern used is kind of a combination of two RGSS sample
schemes, and can be viewed in figure 4.9.

The selection of sampling scheme is highly subjective, and doesn’t re-
ally affect the rasterization algorithm itself in any way.

4.2.5 Optimizations

A number of optimization ideas were tested to speed up rendering. Some
were more successful than others. The tested algorithms are listed in this
section.
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Figure 4.9: Combined RGSS sample scheme. The sampling scheme used in
the reference implementation of the Xorizer algorithm.

Tiled traversal

Visiting every single sample within the bounding box of a triangle requires
a lot of work. It would be better if whole chunks of samples could be eval-
uated at once. The idea of tiled traversal is just this - make a conservative
sampling to determine whether all samples contained within the rectangle
are completely inside or completely outside the shape. The rectangle, or
tile, is n x m pixels, and which n and m to choose depends a lot on the font
size. For small font sizes 1x1 pixels is probably the best option, and this is
what was used in the reference implementation (other sizes were tried but
with worse results).

To know whether a tile is contained within or is outside a triangle you
need to know that all four corners of the tile is inside or outside respec-
tively. Only two of the corners need to be evaluated against each of the
edge functions, though. Looking at the signs of the a and b values of the
current triangle edge function we know which direction the edge normal
has. The direction can be in either of the four quadrants

This actually means that only the tile corner in the same direction as the
normal direction needs to be evaluated against the edge function to know
whether the entire tile is inside the edge. This is because while inside of the
edge this corner will always be the closest to it, and if we move the edge in
its normal direction this corner of the tile will be the first to cross.

The opposite corner of the tile will, in turn, be the most conservative
sample point to evaluate whether the entire tile is outside the edge. We use
the same logic as above, only we use the negative normal direction.

For tiles inside the shape we XOR with a value with all 1’s. In other
words, for our 8 sample-per-pixel, 1x1 tile implementation we XOR the
pixel value with 11111111 which will invert the value and thus “visit” all
pixels at once.

If both of these tests fail and we’re neither completely outside nor com-
pletely inside of the triangle, the tile must be super sampled. This scenario
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Figure 4.10: Tiled traversal. White squares are completely outside the tri-
angle, dark grey are completely inside. Light grey must be evaluated in
greater detail. In this case there is a lot of super sampling. Perhaps using
smaller squares would be beneficial if all triangles are this small.

occurs around the edges of the triangles, as can be viewed in figure 4.10.
All in all, this a good optimization which saves a lot of computations, es-
pecially for large triangles.

Quad evaluation

For each triangle, each sample is currently always evaluated against all
three edge functions. Let’s look at the triangle constellation in figure 4.12.
Both triangles are traversed with the same bounding box. The shared edge
is evaluated twice, once for each triangle. This seems a bit unnecessary,
since the shared edge is obviously inside the area that is to be covered.

This optimization is only useful if the two triangles compose a convex
quad. For triangle constellations such as in figure 4.11, only the left one
can be processed using this method. The right example has to be broken
into two separate triangles. If the quad isn’t convex, it no longer holds that
a point is inside the shape if the edge functions give positive values for
the point. Therefore it must first be determined if the two triangles form a
convex quad, or if the triangles should be processed each by themselves.

The easiest way to do this is to calculate the three edge functions for
one of the triangles. Then the fourth point is evaluated with the three edge
functions. The point must lie inside the two opposing edges, but outside
the shared edge in order to be convex. The different cases are illustrated in
figure 4.11.

The optimization can be extended further to incorporate shapes with
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Figure 4.11: A convex and a concave quad. The left quad (a) can be eval-
uated using the optimized method, but the right one (b) cannot, since the
edge test will fail for some areas that are actually inside the quad.

more than four points. The same criterion still hold, the shapes would have
to be convex. The shared edges are not sampled in detail, but each sample
that actually is evaluated must do so against the number of edges in the
shape, and this will soon become a quite costly process.

Shared edge

Figure 4.12: Convex quad. Two triangles composing a convex quad. The
edge dividing the quad is shared by the triangles.

Ranges

Previously each sample in the bounding box of each triangle was evaluated
against all three edge functions of the triangle. But in some sub-intervals
of the bounding box, one or more edge functions need not be evaluated. It
is already certain that samples within this sub-interval are always on the
same side of the edge. This is shown in figure 4.13.

The trade-off of this optimization is that some portions of the triangle
setup needs to be recalculated for each range. This includes several multi-
plications, though once set up, like before, only additions are needed when
iterating over the current range. In total, up to seven ranges may need to
be evaluated. For small triangles the setup workload for the ranges may
outweigh the benefit of the reduced edge function evaluations. Also, since
the samples are not traversed in order, there may potentially be somewhat
worse caching behavior.

Because of the triangle setup workload, the performance gain of this
optimization is lost for small triangles.
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Figure 4.13: Ranges calculations. Two triangles with their bounding boxes
split into ranges. In a) the lower right range has to be edge tested for two
edges, and the other three only for one edge. In b) the lower right range
doesn’t need to be traversed at all. The upper left range is edge tested once,
and the remaining two ranges are tested against two edges. We must also
do a more thorough edge evaluation along the pixels that contain they grey
lines, where the edge functions meet.

The greatest downside of this optimization is however that the many
special cases can result in quite messy code and larger code size. If this
optimization were to be used in combination with the quad evaluation op-
timization, the code would become a lot more complex and a lot larger. For
convex quads there would have to be up to seventeen individual ranges to
set up and traverse. Would the quad evaluation optimization be more gen-
eralized to handle any convex shape, the range-optimization would have to
be redesigned entirely to be useful. Perhaps using a separate buffer which
holds sample information would be a good idea, though this will use more
memory.

For these reasons the reference implementation only utilizes the range
optimization method for triangles.

Interval arithmetic for Bézier curves

The two optimizations above have not been useful for Bézier segments.
This method, on the other hand, is only used for these particular segments.
It’s desirable to find a way to speed up the evaluation of equation 4.1. It’s
now time to use the concepts introduced in section 2.2.5.

We used the same idea for Tiled Traversal. The tiles we know for sure
will be entirely above or entirely beneath the curve can be processed as a
whole, instead of being super sampled. For this purpose we first fetch the
texture coordinates at the corners of the tile and use them as our interval.
The interval û is calculated through û = [min(u0, u1, u2, u3),max(u0, u1, u2, u3)],
where ui, i ∈ [0, 1, 2, 3] are the u components of the texture coordinates in
each of the corners. We get v̂ the same way.

Now, if we rewrite equation 4.1 using interval arithmetic we get:

û2 − v̂ = û2 + [−v,−v] = [u2 − v, u2 − v] = r̂ (4.2)
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Figure 4.14: Bézier interval arithmetic. A Bézier segment evaluated using
interval arithmetic. The yellow tiles are entirely outside the curve and the
green tiles are entirely beneath. Red tiles need to be evaluated in greater
detail, since they could not be omitted by the conservative interval test.
Blue tiles also need to be evaluated against the dotted triangle edge.

Using this equation we can determine if the tile is entirely beneath the
curve if r < 0, or entirely outside if r > 0.

In figure 4.14 we see how the interval arithmetic can help reduce super
sampling.

4.3 Anchor Point Placement

The placement of the anchor point is important in the Xorizer algorithm.
Different selections will cause different amounts of overdraw, i.e. the total
amount of sample visits. When testing different anchor point placements it
quickly becomes apparent that the average of the points of an outline gives
the best (or very close to) results.

It has been found that different anchor point placements within the
bounding box of a glyph roughly can give up to 70% decrease in rendering
speed. If the anchor point is placed outside the bounding box there is no
limit to how bad the rasterizer will perform. To help the rasterizer with
some offline calculations, the average of all points can be computed before
hand and stored within the font.
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Chapter 5

Improving Rendering for Small
Font Sizes

5.1 Sub-pixel rendering

Microsoft has patented a technology called ClearType in which they are
able to produce “real” sub-pixel precision.

Realizing that the pixel is not the actual display atom, there is a way to
represent glyph shapes more accurately. A single pixel is really a combina-
tion of three colour components - red, green and blue. Rendering shapes
with sub-pixel precision means taking advantage of how these sub-pixel
components are lined up. Basically, each sub-pixel is thought of as an in-
dividual pixel, and thus we are granted three times the accuracy in which
any direction the sub-pixels are lined up.

For example, LCD-displays are very common on hand-held devices to-
day. The sub-pixel components are lined up in the manner seen in figure
5.1.

Since the sub-pixels sizes don’t have the ratio 1:1 like whole pixels, but
instead has the ratio 1:3, the glyph is scaled down by the same ratio. To
compensate for this we re-scale the original outline three times in the sub-
pixel lineup direction, in this case horizontally. By doing so we avoid the

R G B B G R

Figure 5.1: LCD colour component order. These are the most common
colour component arrangements for LCD displays. They can also be verti-
cal. Widely different patterns also exist [15].
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Figure 5.2: Unfiltered and filtered sub-pixel rendering. The top most text
string is rendered without being filtered. It’s quite colourful. The bottom
string is filtered. Each sub-pixel has spread its intensity evenly over itself
and its two neighbouring sub-pixels. (Picture from [7])

final glyph image from being “squished”.

A problem with this technique is that the sub-pixels are obviously not
shades of grey, like regular, non-sub-pixel renderings. This results in very
brightly coloured edges, like in figure 5.2, and this is not acceptable. A
common solution to this problem is to filter the colour. This is done by
distributing the intensity over several pixels, as described in [7]. The result
is much more aestetically pleasing, as figure 5.2 shows.

Even though ClearType-like solutions where individual R-, G- and B-
stripes act as individual pixels is a patent that is hard to avoid, it seems
that different groupings of sub-pixel is possible to avoid patent issues. Kim
Øyhus presents an algorithm on his page [8] where this is used. Figure 5.3
is drawn using this technique.

Figure 5.3: SubLCD sub-pixel rendering. A Unicode string rendered us-
ing two sub-pixels per pixel, green and purple (red + blue). The string is
filtered by distributing half of the intensity for each sub-pixel to the two
neighbouring sub-pixels equally.

The idea is that instead of dividing each pixel into three sub pixels, they
are divided into two, one green and one purple. The motivation is that the
green sub-pixel is more luminous than the other two. In fact, it is even more
so than the blue and red sub-pixels combined (according to Øyhus).

This means that sub-pixel rendering can be used, but we scale the glyphs
to twice their size along the line up direction, instead of to three times their
size. The rest of the theory for this variation of the method is analogous.
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Figure 5.4: SubLCD sub-pixel rendering for different sub-pixel orders. Fil-
tered text with RGB and BGR sub-pixel order.

Figure 5.5: Font hinting for monochrome rasterization. The top rendition
is not hinted. The glyphs have widely different stem widths and there are
many drop-out, especially for the smaller font sizes. The bottom glyphs are
much more readable and don’t have either drop-outs nor odd stem widths.

Beware, though, that patent conflicts with ClearType can’t be entirely
dismissed by the author, and if using this algorithm is considered, legal
expertise should be consulted.

5.2 Hinting

TrueType uses something called hinting instructions to improve render-
ing quality for small font sizes, and to prevent artifacts such as gaps (also
known as dropouts). The difference is very clearly visible in figure 5.5.
However, these artifacts are mainly a concern for renditions using only one
bit per pixel. As the bit depth increases the need for hinting decreases.
For perfect looking glyphs, however, the need for hinting will always be
present, no matter the amount of greys used.

Hinting instructions are actually a set of instructions that are triggered
for different font sizes to “nudge” the glyph’s edges and points, sometimes
quite a lot, before rasterizing it. It is a tedious and difficult process to hint a
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font, but the results can be well worth it, especially for complex fonts which
are intended to be used in very small font sizes.

The standard font Verdana is an excellent example of a well hinted font.
It is a heavily hinted font, and is very good looking down to very small
sizes even when using only a single bit per pixel.

Not many alternative font renderers actually use the hints from the font
file though – using certain hinting instructions for glyphs is patented by
Apple. Instead systems like FreeType and the like use something called
auto-hinting. It means trying to analyze a glyph in real-time before ren-
dering it, and making modifications accordingly. It can produce very good
results, although sometimes not quite as good as an instructed font would
give.

Auto-hinting actually does a number of different things to improve the
glyph shape. Which auto-hinting features are useful vary with the font,
and the cost of the different features vary greatly too. Auto-hinting is not
an exact science, and to decide which features to apply to which fonts is
rather subjective. Also, it can become painfully slow, and for anti-aliased
fonts for embedded systems it is often not worth the cost.

There are however some features that can be beneficial. The most im-
portant ones are as follows.

5.2.1 Stem adjustment/Grid fitting

The middle, vertical line of the letter T is called a stem. Many Latin let-
ters have stems, and these must be clearly visible for maximum readability.
They are quite important features for us when we identify letters.

Generally for Latin fonts, consecutive points that lie on a straight verti-
cal line, and have a corresponding vertical line somewhere within its vicin-
ity are probably parts of a stem. Stems that fall in between two pixel centras
will come out greyish instead of black, and it could somewhat disrupt the
readability. Therefore this auto-hinting feature is useful for Latin fonts, and
it is the author’s opinion that this is the only feature worth bothering im-
plementing for anti-aliased fonts. The difference between a hinted and an
unhinted stem can be viewed in figure 5.6.

The way the glyph is modified through this feature is that the stem is
snapped to the closest pixel edge, so that its centrum coincides with the
pixel centrum.

The same process can of course be used for horizontal stems as well,
though FreeType, for instance, currently does not. This is much more use-
ful for certain complex scripts such as Devanagari (Hindi, Marathi) and
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Figure 5.6: Stem adjustment. An untouched m and a stem adjusted m. Note
that for a monochrome rasterizer, these could use some dropout control for
the arcs as well, as they are completely missed by the pixel centras and
therefore cause gaps.

Bengali. Both of these scripts have something called a headstroke, which is
a horizontal line that flows above the text and connects the glyph bodies.
It’s as important to the native reader as the stems are for Latin speakers.

Since we use our own font format, VOFF, stems can be automatically
flagged offline and saved with the font, so there is no need to identify these
in real time. This makes this feature much more attractive, as the perfor-
mance increases. It is unclear, however, if this is a breach of the Apple
hinting instruction patent...

5.2.2 Drop out control

For monochrome renderings it’s quite common for small font sizes, and
even for narrow glyphs, that small parts of glyphs fall in between two pixel
centers, and is therefore missed entirely. Such a case can be viewed in fig-
ure 5.7. Small gaps of white pixels within glyphs can be the result of this,
which is annoying, to say the least. For anti-aliased fonts this is not really a
problem though, because the sample points are so closely spaced, and it is
highly unlikely that any significant part of any glyph would be missed by
all of them, and if so, they’re too small to be visible anyway.

On top of that, this feature can be quite costly to implement, both per-
formance wise and in time consumption.

5.3 Font styles

Many fonts can have attributes applied to them, such as bold, italic, un-
derlining, and so on. For bold and italic it is common that the font contains
special glyphs for these cases. The reason is that mostly the hinting instruc-
tions will not be the same for the corresponding character when italic, bold
and normal formating is applied. Also, having a new set of glyphs give
the font artist better control over the appearance of the glyphs when the
different attributes are applied.
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Figure 5.7: Drop-outs. The left @ has severe drop-out problems. The right @
has had its drop out problems fixed, as well as being corrected with hinting
instructions. (Picture from [10])

With new glyphs come larger font files and more work for the artist to
complete the font. It can be desirable to auto-generate the bold and italic
styles somehow. For bold and italic we use different approaches to achieve
this, but both modify the shape of the outline. These modifications should
be applied to the point set before scaling to screen space.

5.3.1 Italic

By using an affine transformation we can shear the glyph. This will make
the text lean with an arbitrary factor that the user can decide. We use the
following transformation matrix on the point set composing the outline:

(
1 0 0
rx 1 0

)
(5.1)

where rx is the shearing factor.
This matrix should also be applied to the glyph metrics size and offset

in order to keep a correct bounding box of the glyph. The advance width
should remain the same, as the base of the glyph (that is on the x-axis) is
not modified, and we still want the next glyph to begin at the same position
as without the shearing. Some special care must be taken, though, if a non-
italic glyph follows an italic glyph, so that the italic glyph doesn’t overlap
the non-italic. This is a concern of the layout engine though.

5.3.2 Bold

For this font style we use a different method. In the offline step of the font
conversion process to the VOFF format we can calculate the normal of each
point. We let a value in the interval [0, 255] correspond to a direction [0, 2π].
The normal information is probably easiest to calculate from the normals
of the edge functions from the two adjacent line segments. The normal of a
point is the mean of those two adjacent edge normals.
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Right before it is time to rescale the outline point set to screen coordi-
nates we let each point wander an abitrary distance along its normal. Thus,
we get an expanded, or bold, glyph (see figure 5.9).

This process is not without its drawbacks, though. Two problems can
(and will) occur.

• The font file size will increase with one byte per point as we need to
store the normals. This could be avoided by computing normals on
start-up or in real time, although this could be time consuming. The
file size is still smaller than what a new set of glyphs would result in.

• Two points could cross each others paths and create loops, such as in
figure 5.8. For even-odd rule renderers loops could create problems
with small gaps along the outline. Different scanline renderers can
handle this differently depending on their implementations, but the
Scanliner algorithm will not begin drawing until the right edge of the
loop is reached, which is not the intention. The Xorizer will invert
the area enclosed by the loops one time too many, and render them
white. These loop problems are hard to avoid.

Figure 5.8: Bold loop problem. Loop created by moving outline points in
their respective normal direction.

5.3.3 Other styles

Underlining, colouring and so on, are quite simple cases that we will not
bother with here. We are not constricted to using only shearing when ap-
plying font styles. We could just as easily rotate, scale or reflect the glyphs,
for example. The font size is actually also an affine transformation, as it is
a scaling operation.

Note that if we want to apply both bold and italic, or any other affine
transform, to our glyphs, we must apply the bold operation first, otherwise
the normal information will be incorrect for the transformed outline.

Some different font attributes examples can be viewed in figure 5.9.
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Figure 5.9: Font attributes. The following font attributes are used (listed in
order): normal, bold, italic, outline, bold/italic/colour.
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Chapter 6

Results

6.1 Memory Usage

In this section, we analyze the memory requirements for FreeType and for
the Xorizer. For mobile phones, it is important to keep the memory re-
quirements as low as possible due to the limited resources of the device.
Although none of the methods really require any grave amounts of mem-
ory, it’s desirable to have as small a footprint as possible.

Both FreeType and the Xorizer need some general information about the
glyph about to be rendered, such as the number of contours, the number
of points per contour, contour end points and so on. However, FreeType
also needs about 3400 bytes of allocated memory to store information used
throughout the rasterization process.

The FreeType rasterizer documentation actually states that “A 4KByte
pool is enough for nearly all renditions” [4], but it was found that 3400
bytes was enough for the renderings of the test font. Furthermore, all the
outline points of the glyph need to be in memory. Each point is repre-
sented by two four-byte values, and an additional one-byte flag indicating
whether it is an on- or an off-curve point.

In summary, the following amount is needed for FreeType:

3400 + 9n bytes (6.1)

where n is the number of points in the glyph.
FreeType can draw directly on the target bitmap and therefore does not

need an intermediate working bitmap. For the Xorizer, we need a tempo-
rary frame buffer as large as the glyph’s bounding box. In addition, we
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need the source point and n points, where n can be as low as three de-
pending on the implementation. The total amount of memory needed for
the implementation of the Xorizer algorithm with nine shades of grey (i.e.,
eight samples per pixel) is thus:

wh + 9n + 8 bytes (6.2)

where w and h are the width and height of the temporary frame buffer.
If the lookup table (see section 4.2.3) is used for speedup, an additional 256
bytes are spent, and thus we get:

wh + 9n + 8 + 256 bytes (6.3)

The test font used in the examples have an average count of 35.8 points.
This corresponds to an average usage of 3400 + 9 · 35.8 ≈ 3722 bytes for
the FreeType rasterizer. Hence, for all font sizes less than roughly 60 pixels
(assuming square glyphs), and 58 pixels when using the lookup table, the
Xorizer uses less memory. However, it is often desirable for caching pur-
poses that the glyph rasterizer renders its glyphs to a separate bitmap. And
even more so if the font contains a lot of glyphs (complex scripts, Chinese,
etc.).

In this event, the wh component should be added to the FreeType mem-
ory equation. For the Xorizer algorithm, the working bitmap can be used
both for the xor-counters and later as the resulting glyph bitmap, and so
no extra memory needs to be allocated since these aren’t used at the same
time. As a result, the Xorizer algorithm always uses less memory in these
cases.

6.2 Output

The different rasterizers produce different results. The aim is, of course,
to have a rendering which is as close to the correct image as possible. As
we’ve seen the methods to achieve this differs greatly. Using too coarse ap-
proximations will give renderings that are too different from the expected
result, but using too exact methods may fast become expensive.

In this section we examine a few images of glyph renderings produced
by the Scanliner, the Xorizer and FreeType. In each of the comparisons
the top row is the FreeType rendition. FreeType claims that it produces
exact results, so let’s buy that assumption. The second row cosist of glyphs
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rendered by one of our algorithms. The third row is the absolute difference
between the two, and if a forth row is present, it is merely an enhancement
of the third row for clarification.

Figure 6.1 shows glyphs rendered by the FreeType and the Xorizer. The
difference is mainly a consequence of fewer grey levels in the Xorizer and
sample point placement. It is also likely that some of the differences around
curved edges are due to fixed point precision.

Figure 6.1: FreeType vs. Xorizer output.

In figure 6.2 FreeType is compared to the Scanliner with some para-
meters, namely a subdivision cutoff of 1 pixel for the initial recursion, and 2
pixels otherwise. This means that subdivision will stop when a sub-curve is
no longer than the specified pixel length. The reference implementation has
64 levels of grey. The difference is significantly less than that of the Xorizer
vs. FreeType, and is mainly present around curved segments. Again, ap-
proximation of curves and fixed point precision is the most likely cause.
However, it has been found that the difference doesn’t decrease especially
much if the cutoff value for subdivisions are lowered even further.

Figure 6.2: FreeType vs. Scanliner output (recursive subdivision A). Fine
cutoff. Row four shows the difference enhanced for clarity.

Figure 6.3 also compares the Scanliner to FreeType. This time the subdi-
vision cutoff is set to 2.5 pixels. The differences are still quite small, and the
renderings still look very nice and clear. If the cutoff is raised, or the font
size is increased, then it becomes more and more apparent that the curves
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are actually composed of line segments.

Figure 6.3: FreeType vs. Scanliner output (recursive subdivision B). Coarse
cutoff.

Now we examine the results produces by forward differencing. In fig-
ure 6.4 we see that using two approximation points doesn’t give as good
results as subdivision. Using four approximation points, as in figure 6.5, is
better, but as we will see in the next section this is not the fastest Scanliner
version.

Figure 6.4: FreeType vs. Scanliner output (forward differencing A). 2 ap-
proximation points used.

6.3 Rendering speed

The last very important factor to examine is the rendering speed of the al-
gorithms. Again, FreeType has been used as reference. The testing was per-
formed on a computer with 2.0 GHz and 1 GB RAM. The compiler was op-
timizing for maximum speed for all tests. The test font used was Vrinda.ttf
which contains 255 Latin and Bengali glyphs. All glyphs were drawn 1000
times and the time it took was measured (in other words, lower value is
better). This was done for font sizes between and including 10-40 pixels in
increments of 5, which is mapped to the x-axis of the figures in this section.
The y-axis is the milliseconds it took to cycle through all 1000 iterations.
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Figure 6.5: FreeType vs. Scanliner output (forward differencing B). 4 ap-
proximation points used.

The graph in figure 6.6 shows rendering speeds for different subdivi-
sion cutoffs as well as different amounts of approximation points used for
forward differencing.
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Figure 6.6: FreeType vs. Scanliner speed comparison. The green line (a) is
FreeType with 16k memory. The blue and purple lines (b) are the Scanliner
with fine and coarse subdivision cutoffs respectively. The black line (c) is
the Scanliner with forward differencing with two approximation points,
and the red (d) is with 4 approximation points.

In figure 6.7 the Xorizer is benchmarked with FreeType in its most mem-
ory efficient version. The fastest FreeType version (“unlimited” memory)
is compared to the Scanliner in figure 6.6.

The graph in figure 6.8 shows the collected measurements for all raster-
izers.

Compared to the Xorizer algorithm, FreeType is around 2-5 times faster
depending on font size. This could probably be improved for the Xorizer
using cache tuning and more clever ways of optimization.
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Figure 6.7: FreeType vs. Xorizer speed comparison. The green line (a) is
the trivial implementation of the Xorizer. The blue (b) line is for interval
arithmetic, the purple (c) for ranges, the dotted red (d) is for tiled traversal
and the cyan (e) is for quad evaluation. The black line (f) is the Xorizer
with all optimizations. The red solid line (g) is FreeType with 3400 bytes of
memory.

The algorithms were also ported to Symbian UiQ and tested on a Sony-
Ericsson P1i, in font sizes 10, 20, 30 and 40 pixels. There were major prob-
lems with running FreeType with 3.4 kB of memory for any font size other
than 40 pixels. The test was performed with the scanline algorithm vs.
FreeType with 16kB memory, and the Xorizer vs. FreeType with 3.4kB
memory. The results are presented as time relative to FreeType. The re-
sults of first test were as follows:

Font size Time consumption
10 px 94.2%
20 px 91.9%
30 px 88.7%
40 px 90.2%

We see that the scanline algorithm is about 10 percent faster than FreeType
in this test. The Xorizer, however, compared to the only font size FreeType
would render (40px) needed 383% of the time FreeType needed to produce
the same results.

Clearly, if speed is the most important factor, this implementation of the
Xorizer algorithm is inferior. However, in the Conclusions chapter ideas on
how to improve the Xorizer using OpenGL ES is presented as a suggestion
for future research.

The Scanliner, however, is a good choice for both correctness and speed.
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Figure 6.8: Speed comparison overview. The black line (a) is the Xorizer
and the red line (b) is FreeType with 3400 bytes of memory. The green line
(c) is FreeType with 16k memory. The dotted lines (d) are the Scanliner with
fine and coarse subdivision cutoffs found in figure 6.6.

6.4 Discussion

6.4.1 Overdraw

There is an obvious problem with overdraw in the Xorizer algorithm - it
is based on the idea that the same samples are inverted several times be-
fore they are set to their final state. This idea is both to the algorithm’s
advantage and disadvantage. The algorithm may become slow because of
complex outlines, with many triangles to evaluate, and possibly high over-
draw. However, it still just needs a few points in memory at a time, and
neither time nor effort needs to be put into tessellating the shape before the
rasterization itself begins.

One way of determining overdraw for a cross section is to draw a line
from a point that is outside of the shape to the anchor point. Use an over-
draw counter which starts at 0. We begin wander towards the anchor point.
When an edge is crossed the counter is increased by one. Continue until the
anchor point is reached.

Now the line has a number of intervals with increasing overdraw val-
ues. These correspond to the number of times samples that coincide with
this line will be visited throughout the rasterization process.1

Figure 6.9 shows a shape and its overdraw levels.

1Compare Jordan’s theorem.
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Figure 6.9: Overdraw values. The grey dot is the anchor point. By counting
the number of times we cross a line we can see how many times each area
has to be visited before it is inverted to it’s right state. In this example there
is a small area that will be visited as many as 6 times.

6.4.2 Glyph Representation Issue

Because the Xorizer follows the even-odd rule overlapping shapes will not
be rendered as intended. This introduces some restrictions to the glyph
outline information. Contours should not overlap, as the right plus sign in
figure 2.7. The middle square will remain white since the area within it will
be inverted twice.

This is not a major problem since most font editing tools have func-
tionality to automatically merge contours. Never the less, it is an added
requirement that is not part of the TrueType font standard. But for this
rasterizer’s sake, it is a requirement for our new font format VOFF.
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Chapter 7

Conclusions

7.1 Future Research

It is obvious that the Xorizer algorithm suffers from quite slow rendering
speed when compared to FreeType. And it is questionable if the memory
gain will be worth the loss of speed performance on mobile devices in the
very near future.

There are still a lot of low end mobile phones on the market, mainly
in the developing parts of the world, and these may still have very little
memory to work with. But the mobile phone market moves at an incredible
speed, and soon the memory will not be an issue any longer.

One might think that this marks the end of the Xorizer algorithm idea,
immediately after its birth. However, the future could hold the very oppo-
site.

FreeType is a scanline rasterizer and this approach is not suitable for
hardware accelererated rendering. The Xorizer is a triangle rasterizer and
could therefore greatly benefit from the migration of graphic hardware ac-
celeration to mobile devices.

The newly completed standard OpenGL ES (developed and supported
by over a hundered companies) is a very interesting platform upon which
the Xorizer could be implemented. The latest WTK-releases for all the big
mobile phone companies include the OpenGL ES JSR, and there are already
quite a few phones on the market with support for it. It’s also used in
devices such as the Sony PlayStation 3. It’s beyond any shadow of a doubt
that OpenGL ES will be the most (only?) used graphics API for mobile
devices very soon.

The Xorizer could be implemented using the invert operation in the
stencil buffer, or perhaps in the accumulation buffer. The next natural step
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for the Xorizer algorithm is therefore to determine its potential for OpenGL
ES, but this is left for future research.

As for the Scanliner, there are still things to optimize. The implementa-
tion benchmarked here has at least two minor aspects that could probably
be improved. The first one is that it uses recursive subdivision, which could
be replaced by iterative subdivision. This is probably a much better alter-
native on some platforms where function calls can be expensive. The other
aspect worthy of optimization is the list handling. When a new entry is
inserted into the list, a simple linear search is used to find the right position
for it. Also, it is probably possible to rewrite the coverage handling to use
only one single delta value, as in FreeType and libart.

7.2 Keep It Simple

Many optimization methods were tried under the duration of this thesis.
Not many of them were altogether successful. The added overhead is often
very complex and the cluttered code is probably in most cases worse than
a speed up of one or two percent. It’s often much more difficult to get the
optimizations to run, and the maintenance can beome really horrendous.
The Range-optimization, for instance, doubled the code size many times
over, and was really a nightmare to debug. In the end it wasn’t really worth
the effort, at least not in its current implementation form. The best that can
be hoped for in this case is that someone else might be able to use the idea
in a more useful way, or refrain from spending time trying to implement it.

Overall it seems that the Xorizer is best with fewer optimizations. Even
though the triangle setup is rather slow, not much can be done about it. The
pixel traversal, however, could probably benefit from combining the tiled
traversal with other traversal schemes, although one must be careful not to
thrash the cache by doing so.

No less does the Scanliner support the conclusion to keep it simple.
The algorithm is not at all cluttered with a lot of complex and “clever” op-
timizations. The ideas behind it are rather simple, and the implementation
just relies on known concepts like fixed point math, cheap curve approxi-
mations, line traversal order invariance, and so on. Obviously this was a
rather good strategy.

By now, I think we have established why there are so few triangle font
rasterizers on the market, but with the introduction of GPU’s and hard-
ware graphics acceleration in embedded devices there is still most likely a
market for such algorithms.
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